Abstract

This work investigates how uncertainties in the balancing weights are propagating into the vibration response of a high-speed rotor. Balancing data are obtained from a 166-MW gas turbine rotor in a vacuum balancing tunnel. The influence coefficient method is then implemented to characterize the rotor system by a deterministic multi-speed and multi-plane matrix. To model the uncertainties, a non-sampling probabilistic method based on the generalized polynomial chaos expansion (gPCE) is employed. The uncertain parameters including the mass and angular positions of the balancing weights are then expressed by gPCE with deterministic coefficients. Assuming predefined probability distributions of the uncertain parameters, the stochastic Galerkin projection is applied to calculate the coefficients for the input parameters. Furthermore, the vibration amplitudes of the rotor response are represented by appropriate gPCE with unknown deterministic coefficients. These unknown coefficients are determined using the stochastic collocation method by evaluating the gPCE for the system response at a set of collocation points. The effects of individual and combined uncertain parameters from a single and multiple balancing planes on the rotor vibration response are examined. Results are compared with the Monte Carlo simulations, showing excellent agreement.

References

References
1.
Darlow
,
M. S.
,
1987
, “
Balancing of High-Speed Machinery: Theory, Methods and Experimental Results
,”
Mech. Syst. Signal Process.
,
1
(
1
), pp.
105
134
. 10.1016/0888-3270(87)90087-2
2.
Deepthikumar
,
M.
,
Sekhar
,
A.
, and
Srikanthan
,
M.
,
2013
, “
Modal Balancing of Flexible Rotors with Bow and Distributed Unbalance
,”
J. Sound. Vib.
,
332
(
24
), pp.
6216
6233
. 10.1016/j.jsv.2013.04.043
3.
Untaroiu
,
C.
, and
Allaire
,
P.
,
2005
, “
A Generalized Minmax Influence Coefficient Method for Flexible Rotor Balancing
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol.
42150
,
Orlando, FL
,
Nov. 5–1
1, pp.
1073
1078
.
4.
Untaroiu
,
C. D.
,
Allaire
,
P. E.
, and
Foiles
,
W. C.
,
2008
, “
Balancing of Flexible Rotors Using Convex Optimization Techniques: Optimum Min-max Lmi Influence Coefficient Balancing
,”
ASME J. Vib. Acoust.
,
130
(
2
), p.
021006
. 10.1115/1.2730535
5.
Darlow
,
M.
,
Smalley
,
A.
, and
Parkinson
,
A.
,
1981
, “
Demonstration of a Unified Approach to the Balancing of Flexible Rotors
,”
J. Engin. Power
,
103
(
1
), pp.
101
107
. 10.1115/1.3230679
6.
Khulief
,
Y.
,
Oke
,
W.
, and
Mohiuddin
,
M.
,
2014
, “
Modally Tuned Influence Coefficients for Low-speed Balancing of Flexible Rotors
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
024501
. 10.1115/1.4025995
7.
Hanish
,
G. R.
,
2005
, “
Investigation of the Influence Coefficient Method for Balancing of Flexible Rotors Systems
,”
PhD thesis
,
Northumbria University
,
Newcastle upon Tyne, England
.
8.
Li
,
G.
,
Lin
,
Z.
, and
Allaire
,
P. E.
,
2008
, “
Robust Optimal Balancing of High-speed Machinery Using Convex Optimization
,”
ASME J. Vib. Acoust.
,
130
(
3
), p.
031008
. 10.1115/1.2890405
9.
Der Kiureghian
,
A.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory Or Epistemic? Does it Matter?
Structural Safety
,
31
(
2
), pp.
105
112
. 10.1016/j.strusafe.2008.06.020
10.
Sepahvand
,
K.
,
Marburg
,
S.
, and
Hardtke
,
H.-J.
,
2010
, “
Uncertainty Quantification in Stochastic Systems Using Polynomial Chaos Expansion
,”
Int. J. Appl. Mech.
,
2
(
02
), pp.
305
353
. 10.1142/S1758825110000524
11.
Carvalho
,
V. N.
,
Rende
,
B. F. R.
,
Silva
,
A. D. G.
,
Ap Cavalini
,
A.
, and
Steffen
,
V.
,
2018
, “
Robust Balancing Approach for Rotating Machines Based on Fuzzy Logic
,”
ASME J. Vib. Acoust.
,
140
(
5
), p.
051018
. 10.1115/1.4039801
12.
Wang
,
X.
, and
Wang
,
L.
,
2011
, “
Uncertainty Quantification and Propagation Analysis of Structures Based on Measurement Data
,”
Math. Comput. Modell.
,
54
(
11–12
), pp.
2725
2735
. 10.1016/j.mcm.2011.06.060
13.
Li
,
G.
,
Lin
,
Z.
,
Untaroiu
,
C.
, and
Allaire
,
P. E.
,
2003
, “
Balancing of High-Speed Rotating Machinery Using Convex Optimization
,”
42nd IEEE International Conference on Decision and Control
,
Maui, HI
, IEEE, pp.
4351
4356
.
14.
Sepahvand
,
K.
,
Marburg
,
S.
, and
Hardtke
,
H.-J.
,
2011
, “
Stochastic Structural Modal Analysis Involving Uncertain Parameters Using Generalized Polynomial Chaos Expansion
,”
Int. J. Appl. Mech.
,
3
(
03
), pp.
587
606
. 10.1142/S1758825111001147
15.
Sepahvand
,
K.
, and
Marburg
,
S.
,
2013
, “
On Construction of Uncertain Material Parameter Using Generalized Polynomial Chaos Expansion From Experimental Data
,”
Procedia IUTAM
,
6
(
1
), pp.
4
17
. 10.1016/j.piutam.2013.01.001
16.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
. 10.2307/2371268
17.
Cameron
,
R. H.
, and
Martin
,
W. T.
,
1947
, “
The Orthogonal Development of Non-linear Functionals in Series of Fourier-hermite Functionals
,”
Ann. Math.
,
48
(
2
), pp.
385
392
. 10.2307/1969178
18.
Yang
,
J.
,
Faverjon
,
B.
,
Peters
,
H.
,
Marburg
,
S.
, and
Kessissoglou
,
N.
,
2017
, “
Deterministic and Stochastic Model Order Reduction for Vibration Analyses of Structures With Uncertainties
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021007
. 10.1115/1.4035133
19.
Didier
,
J.
,
Faverjon
,
B.
, and
Sinou
,
J.-J.
,
2012
, “
Analysing the Dynamic Response of a Rotor System Under Uncertain Parameters by Polynomial Chaos Expansion
,”
J. Vib. Control
,
18
(
5
), pp.
712
732
. 10.1177/1077546311404269
20.
Koroishi
,
E. H.
,
Cavalini Jr
,
A. A.
,
de Lima
,
A. M.
, and
Steffen Jr
,
V.
,
2012
, “
Stochastic Modeling of Flexible Rotors
,”
J. Brazilian Soc. Mech. Sci. Engin.
,
34
(
SPE2
), pp.
574
583
. 10.1590/S1678-58782012000600006
21.
Murthy
,
R.
,
Tomei
,
J. C.
,
Wang
,
X.
,
Mignolet
,
M. P.
, and
El-Shafei
,
A.
,
2014
, “
Nonparametric Stochastic Modeling of Structural Uncertainty in Rotordynamics: Unbalance and Balancing Aspects
,”
ASME J. Eng. Gas. Turbines. Power.
,
136
(
6
), p.
062506
. 10.1115/1.4026166
22.
Sinou
,
J.-J.
, and
Jacquelin
,
E.
,
2015
, “
Influence of Polynomial Chaos Expansion Order on An Uncertain Asymmetric Rotor System Response
,”
Mech. Syst. Signal Process.
,
50
(
1
), pp.
718
731
. 10.1016/j.ymssp.2014.05.046
23.
Lasota
,
R.
,
Stocki
,
R.
,
Tauzowski
,
P.
, and
Szolc
,
T.
,
2015
, “
Polynomial Chaos Expansion Method in Estimating Probability Distribution of Rotor-shaft Dynamic Responses
,”
Bull. Polish Acad. Sci. Tech. Sci.
,
63
(
2
), pp.
413
422
.
24.
Zuo
,
Y.
, and
Wang
,
J.
,
2017
, “
A Method for Dynamic Analysis of Three-dimensional Solid Element Rotors with Uncertain Parameters
,”
ASME J. Eng. Gas. Turbines. Power.
,
139
(
5
), p.
054501
.
25.
Dourado
,
A.
,
Cavalini Jr
,
A.
, and
Steffen Jr
,
V.
,
2018
, “
Uncertainty Quantification Techniques Applied to Rotating Systems: A Comparative Study
,”
J. Vib. Control
,
24
(
14
), pp.
3010
3025
. 10.1177/1077546317698556
26.
Lu
,
K.
,
Yang
,
Y.
,
Xia
,
Y.
, and
Fu
,
C.
,
2019
, “
Statistical Moment Analysis of Nonlinear Rotor System with Multi Uncertain Variables
,”
Mech. Syst. Signal Process.
,
116
(
1
), pp.
1029
1041
. 10.1016/j.ymssp.2018.07.008
27.
Fu
,
C.
,
Ren
,
X.
, and
Yang
,
Y.
,
2019
, “
Vibration Analysis of Rotors Under Uncertainty Based on Legendre Series
,”
J. Vib. Engin. Technol.
,
7
(
1
), pp.
43
51
. 10.1007/s42417-018-0078-4
28.
Fu
,
C.
,
Xu
,
Y.
,
Yang
,
Y.
,
Lu
,
K.
,
Gu
,
F.
, and
Ball
,
A.
,
2020
, “
Response Analysis of An Accelerating Unbalanced Rotating System With Both Random and Interval Variables
,”
J. Sound. Vib.
,
466
(
1
), p.
115047
. 10.1016/j.jsv.2019.115047
29.
Sepahvand
,
K.
,
Nabih
,
K.
, and
Marburg
,
S.
,
2015
, “
Collocation-Based Stochastic Modeling of Uncertain Geometric Mistuning in Bladed Rotor
,”
Procedia IUTAM
,
13
(
1
), pp.
53
62
. 10.1016/j.piutam.2015.01.015
30.
Didier
,
J.
,
Sinou
,
J.-J.
, and
Faverjon
,
B.
,
2012
, “
Study of the Non-Linear Dynamic Response of a Rotor System With Faults and Uncertainties
,”
J. Sound. Vib.
,
331
(
3
), pp.
671
703
. 10.1016/j.jsv.2011.09.001
31.
Lucor
,
D.
,
Su
,
C.-H.
, and
Karniadakis
,
G. E.
,
2004
, “
Generalized Polynomial Chaos and Random Oscillators
,”
Int. J. Numer. Methods Engin.
,
60
(
3
), pp.
571
596
. 10.1002/nme.976
32.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
1991
,
Stochastic Finite Element Method: Response Statistics
,
Springer-Verlag, New York, Inc.
,
New York
, pp.
101
119
.
33.
Lund
,
J. W.
, and
Tonnesen
,
J.
,
1972
, “
Analysis and Experiments on Multi-Plane Balancing of a Flexible Rotor
,”
ASME J. Eng. Ind.
,
94
(
1
), pp.
233
242
. 10.1115/1.3428116
34.
Rao
,
J.
,
1996
,
Rotor Dynamics
,
John Wiley & Sons
,
New York
.
35.
Ishida
,
Y.
, and
Yamamoto
,
T.
,
2013
,
Linear And Nonlinear Rotordynamics: a Modern Treatment with Applications
,
John Wiley & Sons
,
New York
.
36.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: a Spectral Method Approach
,
Princeton university press
,
Princeton, USA
.
37.
Montgomery
,
D. C.
, and
Runger
,
G. C.
,
2010
,
Applied Statistics and Probability for Engineers
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.