Abstract

Patient-transfer robot, which can transfer a bedridden care receiver from a bed to a wheelchair or a pedestal pan and back, was not widely used due to inadequate safety and comfort. A human comfort evaluation function based on force analysis was proposed to improve the comfort of a dual-arm transfer robot. First, a human–robot mechanical model was construct by simplifying the structure of human body and the robot. Then, the internal and external forces acting on human body were calculated by the developed human–robot mechanical model. After that, a comfort evaluation function was established through mechanical analysis and a questionnaire investigation method. To assess the validity of the proposed method, first we employed the comfort evaluation function to estimate human comfort, and obtained that the comfort level is proportional to the electromyography (EMG) signal and pressure signal of human. Then we applied the function to a dual-arm patient-transfer robot to optimizing lifting points and transfer posture and found it can effectively reduce the human–robot contact force and the burden of the waist by 44.2%, improving the comfortability of the care receiver.

References

1.
Bi
,
Z. M.
,
Luo
,
C.
,
Miao
,
Z.
,
Zhang
,
B.
,
Zhang
,
W. J.
, and
Wang
,
L.
,
2021
, “
Safety Assurance Mechanisms of Collaborative Robotic Systems in Manufacturing
,”
Rob. Comput.-Integr. Manuf.
,
67
, p.
102022
.10.1016/j.rcim.2020.102022
2.
Zhang
,
L. W.
, and
Fang
,
Y.
,
2021
, “
Prediction of Disability Scale and Care Cost of Urban and Rural Elderly in China From 2020–2050
,”
Chin. J. Health Stat.
,
38
(
1
), pp.
39
42
.10.3969/j.issn.1002-3674.2021.01.010
3.
Sefcik
,
J. S.
,
Johnson
,
M. J.
,
Yim
,
M.
,
Lau
,
T.
,
Vivio
,
N.
,
Mucchiani
,
C.
, and
Cacchione
,
P. Z.
,
2018
, “
Stakeholders' Perceptions Sought to Inform the Development of a Low-Cost Mobile Robot for Older Adults: A Qualitative Descriptive Study
,”
Clin. Nurs. Res.
,
27
(
1
), pp.
61
80
.10.1177/1054773817730517
4.
Zsiga
,
K.
,
Tóth
,
A.
,
Pilissy
,
T.
,
Péter
,
O.
,
Dénes
,
Z.
, and
Fazekas
,
G.
,
2018
, “
Evaluation of a Companion Robot Based on Field Tests With Single Older Adults in Their Homes
,”
Assistive Technol.
,
30
(
5
), pp.
259
266
.10.1080/10400435.2017.1322158
5.
Wang
,
B.
,
Pang
,
S.
, and
Fang
,
C.
,
2017
, “
Survey of Status Quo and Influencing Factors of Family Members' Nursing Burden on Community Oldest Old
,”
Chin. Nurs. Res.
,
31
(
28
), pp.
3520
3523
.10.3969/j.issn.1009-6493.2017.28.010
6.
Gao
,
F.
, and
Guo
,
W.
,
2016
, “
Thinking of the Development Strategy of Robots in China
,”
J. Mech. Eng.
,
52
(
7
), pp.
1
5
.10.3901/JME.2016.07.001
7.
Yan
,
Y.
,
Xu
,
J.
,
Lu
,
Z.
,
Song
,
K.
, and
Liu
,
B.
,
2017
, “
Development and Research Status of Humanoid Service Robots
,”
Robot
,
39
(
4
), pp.
551
564
.10.13973/j.cnki.robot.2017.0551
8.
Mukai
,
T.
,
Hirano
,
S.
,
Nakashima
,
H.
,
Kato
,
Y.
,
Sakaida
,
Y.
,
Guo
,
S.
, and
Hosoe
,
S.
,
2010
, “
Development of a Nursing-Care Assistant Robot RIBA That Can Lift a Human in Its Arms
,”
Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Taipei, Taiwan, Oct. 18–22, pp.
5996
6001
.10.1109/IROS.2010.5651735
9.
Sang
,
L.
,
Yamamura
,
M.
,
Dong
,
F.
,
Gan
,
Z.
,
Fu
,
J.
,
Wang
,
H.
, and
Tian
,
Y.
,
2019
, “
Analysis, Design, and Experimental Research of a Novel Wheelchair-Stretcher Assistive Robot
,”
Appl. Sci.
,
10
(
1
), p.
264
.10.3390/app10010264
10.
Maalouf
,
N.
,
Sidaoui
,
A.
,
Elhajj
,
I. H.
, and
Asmar
,
D.
,
2018
, “
Robotics in Nursing: A Scoping Review
,”
J. Nurs. Scholarship
,
50
(
6
), pp.
590
600
.10.1111/jnu.12424
11.
Sun
,
M.
,
Nakashima
,
H.
,
Hirano
,
S.
,
Matsuo
,
K.
,
Ding
,
M.
,
Jiang
,
C. A.
,
Mukai
,
T.
, and
Qin
,
G.
,
2013
, “
Adaptive User-Centered Design for Safety and Comfort of Physical Human Nursing–Care Robot Interaction
,”
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management
,
Springer
,
Berlin, Germany
, pp.
365
372
.
12.
Tang
,
R.
,
Govil
,
S.
,
Mauger
,
C.
,
Hegde
,
S.
,
Omens
,
J. H.
,
Perry
,
J. C.
, and
McCulloch
,
A. D.
,
2022
, “
Modeling Single Ventricle Morphology With a HLHS-Specific Biventricular Template to Enhance Statistical Shape and Biomechanics Analyses
,”
ASME
Paper No. IMECE2022-95115.10.1115/IMECE2022-95115
13.
Bojairami
,
I. E.
,
El-Monajjed
,
K.
, and
Driscoll
,
M.
,
2020
, “
Development and Validation of a Timely and Representative Finite Element Human Spine Model for Biomechanical Simulations
,”
Sci. Rep.
,
10
(
1
), p.
21519
.10.1038/s41598-020-77469-1
14.
Alawneh
,
O.
,
Zhong
,
X.
,
Faieghi
,
R.
, and
Xi
,
F.
,
2022
, “
Finite Element Methods for Modeling the Pressure Distribution in Human Body–Seat Interactions: A Systematic Review
,”
Appl. Sci.
,
12
(
12
), p.
6160
.10.3390/app12126160
15.
Diaz
,
A.
, and
Newman
,
D.
,
2014
, “
Musculoskeletal Human-Spacesuit Interaction Model
,”
Proceedings of the 2014 IEEE Aerospace Conference
, Big Sky, MT, Mar. 1–8, pp.
1
13
.10.1109/AERO.2014.6836247
16.
Stollenmaier
,
K.
,
Ilg
,
W.
, and
Haeufle
,
D. F.
,
2020
, “
Predicting Perturbed Human Arm Movements in a Neuro-Musculoskeletal Model to Investigate the Muscular Torce Response
,”
Front. Bioeng. Biotechnol.
,
8
, p.
308
.10.3389/fbioe.2020.00308
17.
Bayoglu
,
R.
,
Galibarov
,
P. E.
,
Verdonschot
,
N.
,
Koopman
,
B.
, and
Homminga
,
J.
,
2019
, “
Twente Spine Model: A Thorough Investigation of the Spinal Loads in a Complete and Coherent Musculoskeletal Model of the Human Spine
,”
Med. Eng. Phys.
,
68
, pp.
35
45
.10.1016/j.medengphy.2019.03.015
18.
Nakamura
,
Y.
,
Yamane
,
K.
,
Fujita
,
Y.
, and
Suzuki
,
I.
,
2005
, “
Somatosensory Computation for Man-Machine Interface From Motion-Capture Data and Musculoskeletal Human Model
,”
IEEE Trans. Rob.
,
21
(
1
), pp.
58
66
.10.1109/TRO.2004.833798
19.
Zyada
,
Z.
,
Hayakawa
,
Y.
, and
Hosose
,
S.
,
2010
, “
Kinematic Analysis of a Two-Link Object for Whole Arm Manipulation
,”
Proceedings of the 9th WSEAS International Conference on Signal Processing, Robotics and Automation
, WI, Feb. 20–22, pp.
139
145
.10.5555/1807817.1807844
20.
Ding
,
M.
,
Ikeura
,
R.
,
Mukai
,
T.
,
Nagashima
,
H.
,
Hirano
,
S.
,
Matsuo
,
K.
,
Sun
,
M.
, and
Hosoe
,
S.
,
2012
, “
Comfort Estimation During Lift-Up Using Nursing-Care Robot—RIBA
,”
Proceedings of the 2012 First International Conference on Innovative Engineering Systems
, Alexandria, Egypt, Dec. 7–9, pp.
225
230
.10.1109/ICIES.2012.6530874
21.
Ding
,
M.
,
Matsubara
,
T.
,
Funaki
,
Y.
,
Ikeura
,
R.
,
Mukai
,
T.
, and
Ogasawara
,
T.
,
2017
, “
Generation of Comfortable Lifting Motion for a Human Transfer Assistant Robot
,”
Int. J. Intell. Rob. Appl.
,
1
(
1
), pp.
74
85
.10.1007/s41315-016-0009-z
22.
Liu
,
J.
,
Li
,
S.
, and
Chen
,
M.
,
2019
, “
Visual Recognition of the Human Pose for Transfer-Care Assistant Robot
,”
Robot
,
41
(
5
), pp.
44
51
.10.13973/j.cnki.robot.190020
23.
Zeng
,
H.
,
2014
, “
Study for the Recognition System of One-Dimensional Distribution of Body's Weight
,” Ph.D. thesis,
Chongqing University
,
Chongqing, China
.
24.
Chen
,
L.
,
2021
, “
Mechanism Design and Motion Planning of Dual-Arm Transfer Nursing Robot
,” Ph.D. thesis,
Hebei University of Technology
,
Tianjin, China
.
25.
Gupta
,
S.
, and
Deep
,
K.
,
2019
, “
A Novel Random Walk Grey Wolf Optimizer
,”
Swarm Evol. Comput.
,
44
, pp.
101
112
.10.1016/j.swevo.2018.01.001
26.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst., Man, Cybern.
,
9
(
1
), pp.
62
66
.10.1109/TSMC.1979.4310076
27.
Treaster
,
D.
, and
Marras
,
W. S.
,
1987
, “
Measurement of Seat Pressure Distributions
,”
Hum. Factors
,
29
(
5
), pp.
563
575
.10.1177/001872088702900506
28.
Arozi
,
M.
,
Caesarendra
,
W.
,
Ariyanto
,
M.
,
Munadi
,
M.
,
Setiawan
,
J. D.
, and
Glowacz
,
A.
,
2020
, “
Pattern Recognition of Single-Channel sEMG Signal Using PCA and ANN Method to Classify Nine Hand Movements
,”
Symmetry
,
12
(
4
), p.
541
.10.3390/sym12040541
29.
Liu
,
Y.
,
Guo
,
S.
,
Chen
,
G.
,
Liu
,
J.
, and
Gan
,
Z.
,
2020
, “
Bionic Motion Planning and the Analysis for Human Comfort of a Piggyback Nursing-Care Robot for Transfer Tasks
,”
Chin. J. Mech. Eng.
,
56
(
15
), pp.
147
156
.10.3901/JME.2020.15.147
You do not currently have access to this content.