Abstract

The popularization of Industry 4.0 and its technological pillars has allowed prognostics and health management (PHM) strategies to be applied in complex systems to optimize their performance and extend their useful life by taking advantage of a digitalized, integrated environment. Due to this context, the use of digital twins and digital shadows, which are virtual representations of physical systems that provide real-time monitoring and analysis of the health and performance of the system, has been increasingly used in the application of fault detection, a key component of PHM. Taking that into consideration, this work proposes a framework for fault detection in engineering systems based on the construction and application of a digital shadow. This digital shadow is based on a digital model composed of a system of equations and a continuous, real-time communication process with a supervisory control and data acquisition (SCADA) system. The digital model is generated using monitoring data from the system under study. The proposed method was applied in two case studies, one based on synthetic data and another that uses a simulated database of an operational generating unit of a hydro-electric power plant. The method, in both case studies, was able to detect faults accurately and effectively. Besides, the method provides by-products that can be used in the future in other applications, helping with the PHM in other aspects.

References

1.
Sutharssan
,
T.
,
Stoyanov
,
S.
,
Bailey
,
C.
, and
Yin
,
C.
,
2015
, “
Prognostic and Health Management for Engineering Systems: A Review of the Data‐Driven Approach and Algorithms
,”
J. Eng.
,
2015
(
7
), pp.
215
222
.10.1049/joe.2014.0303
2.
Ehrhardt
,
J. M.
, and
Hoffmann
,
C. T.
,
2020
, “
The Digital Shadow: Developing a Universal Model for the Automated Optimization of Cyber-Physical Production Systems Based on Real-Time Data
,”
Procedia CIRP
,
93
, pp.
304
310
.10.1016/j.procir.2020.03.069
3.
Silvestri
,
L.
,
Forcina
,
A.
,
Introna
,
V.
,
Santolamazza
,
A.
, and
Cesarotti
,
V.
,
2020
, “
Maintenance Transformation Through Industry 4.0 Technologies: A Systematic Literature Review
,”
Comput. Ind.
,
123
, p.
103335
.10.1016/j.compind.2020.103335
4.
Ghobakhloo
,
M.
,
2020
, “
Industry 4.0, Digitization, and Opportunities for Sustainability
,”
J. Cleaner Prod.
,
252
, p.
119869
.10.1016/j.jclepro.2019.119869
5.
Singh
,
M.
,
Fuenmayor
,
E.
,
Hinchy
,
E.
,
Qiao
,
Y.
,
Murray
,
N.
, and
Devine
,
D.
,
2021
, “
Digital Twin: Origin to Future
,”
Appl. Syst. Innovation
,
4
(
2
), p.
36
.10.3390/asi4020036
6.
You
,
Y.
,
Chen
,
C.
,
Hu
,
F.
,
Liu
,
Y.
, and
Ji
,
Z.
,
2022
, “
Advances of Digital Twins for Predictive Maintenance
,”
Procedia Comput. Sci.
,
200
, pp.
1471
1480
.10.1016/j.procs.2022.01.348
7.
Adamenko
,
D.
,
Kunnen
,
S.
,
Pluhnau
,
R.
,
Loibl
,
A.
, and
Nagarajah
,
A.
,
2020
, “
Review and Comparison of the Methods of Designing the Digital Twin
,”
Procedia CIRP
,
91
, pp.
27
32
.10.1016/j.procir.2020.02.146
8.
Wagg
,
D. J.
,
Worden
,
K.
,
Barthorpe
,
R. J.
, and
Gardner
,
P.
,
2020
, “
Digital Twins: State-of-the-Art and Future Directions for Modeling and Simulation in Engineering Dynamics Applications
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
6
(
3
), p.
030901
.10.1115/1.4046739
9.
Worden
,
K.
,
Cross
,
E. J.
,
Barthorpe
,
R. J.
,
Wagg
,
D. J.
, and
Gardner
,
P.
,
2020
, “
On Digital Twins, Mirrors, and Virtualizations: Frameworks for Model Verification and Validation
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
6
(
3
), p.
030902
.10.1115/1.4046740
10.
Shangguan
,
D.
,
Chen
,
L.
, and
Ding
,
J.
,
2020
, “
A Digital Twin-Based Approach for the Fault Diagnosis and Health Monitoring of a Complex Satellite System
,”
Symmetry (Basel
),
12
(
8
), p.
1307
.10.3390/sym12081307
11.
Lu
,
Q.
,
Xie
,
X.
,
Parlikad
,
A. K.
, and
Schooling
,
J. M.
,
2020
, “
Digital Twin-Enabled Anomaly Detection for Built Asset Monitoring in Operation and Maintenance
,”
Autom. Constr.
,
118
, p.
103277
.10.1016/j.autcon.2020.103277
12.
Luo
,
W.
,
Hu
,
T.
,
Ye
,
Y.
,
Zhang
,
C.
, and
Wei
,
Y.
,
2020
, “
A Hybrid Predictive Maintenance Approach for CNC Machine Tool Driven by Digital Twin
,”
Rob. Comput.-Integr. Manuf.
,
65
, p.
101974
.10.1016/j.rcim.2020.101974
13.
Kosova
,
F.
, and
Unver
,
H. O.
,
2023
, “
A Digital Twin Framework for Aircraft Hydraulic Systems Failure Detection Using Machine Learning Techniques
,”
Proc. Inst. Mech. Eng., Part C
,
237
(
7
), pp.
1563
1580
.10.1177/09544062221132697
14.
Yadav
,
G.
, and
Paul
,
K.
,
2021
, “
Architecture and Security of SCADA Systems: A Review
,”
Int. J. Crit. Infrastruct. Prot.
,
34
, p.
100433
.10.1016/j.ijcip.2021.100433
15.
Sharma
,
A.
,
Kosasih
,
E.
,
Zhang
,
J.
,
Brintrup
,
A.
, and
Calinescu
,
A.
,
2022
, “
Digital Twins: State of the Art Theory and Practice, Challenges, and Open Research Questions
,”
J. Ind. Inf. Integr.
,
30
, p.
100383
.10.1016/j.jii.2022.100383
16.
Lacroix
,
S.
,
Ostermeyer
,
E.
,
Duigou
,
J. L.
,
Bornard
,
F.
,
Rival
,
S.
,
Mary
,
M.
, and
Eynard
,
B.
,
2023
, “
Lessons Learnt in Industrial Data Platform Integration
,”
Procedia Comput. Sci.
,
217
, pp.
1660
1669
.10.1016/j.procs.2022.12.366
17.
de Souza
,
G. F. M.
,
Melani
,
A. H. D. A.
,
Michalski
,
M. A. D. C.
, and
Da Silva
,
R. F.
, eds.,
2021
,
Reliability Analysis and Asset Management of Engineering Systems
,
1st ed., Elsevier
, Amsterdam, The Netherlands..
18.
da Silva
,
R. F.
,
de Andrade Melani
,
A. H.
,
de Carvalho Michalski
,
M. A.
, and
de Souza
,
G. F. M.
,
2022
, “
Failure Mode and Observability Analysis (FMOA): An FMEA-Based Method to Support Fault Detection and Diagnosis
,”
Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)
, Dublin, Ireland, Aug. 28–Sept. 1, pp.
1220
1226
.
19.
Fávero
,
L. P.
, and
Belfiore
,
P.
,
2019
,
Data Science for Business and Decision Making
,
1st ed., Academic Press
, Cambridge, MA.
20.
Akaike
,
H.
,
1974
, “
A New Look at the Statistical Model Identification
,”
IEEE Trans. Autom. Control
,
19
(
6
), pp.
716
723
.10.1109/TAC.1974.1100705
21.
Hocking
,
R. R.
,
1976
, “
The Analysis and Selection of Variables in Linear Regression
,”
Biometrics
,
32
(
1
), p.
1
.10.2307/2529336
22.
Montgomery
,
D. C.
, and
Runger
,
G. C.
,
2021
,
Applied Statistics and Probability for Engineers
,
Wiley
,
Hoboken
, NJ.
23.
Lei
,
Y.
,
Li
,
N.
,
Guo
,
L.
,
Li
,
N.
,
Yan
,
T.
, and
Lin
,
J.
,
2018
, “
Machinery Health Prognostics: A Systematic Review From Data Acquisition to RUL Prediction
,”
Mech. Syst. Signal Process.
,
104
, pp.
799
834
.10.1016/j.ymssp.2017.11.016
24.
Alpaydin
,
E.
,
2014
,
Introduction to Machine Learning
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
25.
Chambers
,
J. M.
, and
Hastie
,
T. J.
,
1993
,
Statistical Models in S. Technometrics
,
J. M.
Chambers
, and
T. J.
Hastie
, eds.,
Chapman & Hall
,
London
.
26.
de Andrade Melani
,
A. H.
,
de Carvalho Michalski
,
M. A.
,
da Silva
,
R. F.
, and
de Souza
,
G. F. M.
,
2021
, “
A Framework to Automate Fault Detection and Diagnosis Based on Moving Window Principal Component Analysis and Bayesian Network
,”
Reliab. Eng. Syst. Saf.
,
215
, p.
107837
.10.1016/j.ress.2021.107837
27.
de Carvalho Michalski
,
M. A.
,
de Melo
,
I. S.
, and
de Souza
,
G. F. M.
,
2019
, “
Comparing Principal Component Analysis and Mahalanobis–Taguchi System to Detect Unbalance in a Centrifugal Compressor in a Floating Production Storage and Offloading
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
5
(
4
), p.
041012
.10.1115/1.4044041
28.
de Carvalho Michalski
,
M. A.
,
de Andrade Melani
,
A. H.
,
da Silva
,
R. F.
,
de Souza
,
G. F.
,
Nabeta
,
S. I.
, and
Hamaji
,
F. H.
,
2020
, “
Applying Moving Window Principal Component Analysis (MWPCA) for Fault Detection in Hydrogenerator
,”
Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference
, Venice, Italy, Nov. 1–5, p.
8
.https://www.researchgate.net/publication/342365411_Applying_Moving_Window_Principal_Component_Analysis_MWPCA_for_fault_detection_in_hydrogenerato
You do not currently have access to this content.