Abstract

A study was conducted to investigate the effects of surface microhardness on different phases of fatigue damage. This helps to estimate the evolution of the material resistance from microplastic distortions and gives pertinent data about cumulated fatigue damage. The objective of this work is to propose a damage criterion, associated with microstructural changes, to predict the fatigue life of steel structures submitted to cyclic loads before macroscopic cracking. Instrumented indentation tests (IIT) were conducted on test samples submitted to high cycle fatigue (HCF) loads. To evaluate the role of the microstructure initial state, the material was considered in two different conditions: as-received and annealed. It was observed that significant changes in the microhardness values happened at the surface and subsurface of the material, up to 2 µm of indentation depth, and around 21% and 7% of the fatigue life for as-received and annealed conditions, respectively. These percentages were identified as a critical period for microstructural changes, which was taken as a reference in a damage criterion to predict the number of cycles to fatigue failure (Nf) of a steel structure.

References

1.
Drumond
,
G. P.
,
Pasqualino
,
I. P.
,
Pinheiro
,
B. C.
, and
Estefen
,
S. F.
,
2018
, “
Pipelines, Risers and Umbilicals Failures: A Literature Review
,”
Ocean Eng.
,
148
, pp.
412
425
. 10.1016/j.oceaneng.2017.11.035
2.
Pinheiro
,
B. C.
,
Lesage
,
J.
,
Pasqualino
,
I. P.
,
Benseddiq
,
N.
, and
Bemporad
,
E.
,
2012
, “
X-Ray Diffraction Study of Microstructural Changes During Fatigue Damage Initiation in Steel Pipes
,”
Mater. Sci. Eng. A
,
532
, pp.
158
166
. 10.1016/j.msea.2011.10.077
3.
Pinheiro
,
B. C.
,
Lesage
,
J.
,
Pasqualino
,
I. P.
,
Bemporad
,
E.
, and
Benseddiq
,
N.
,
2013
, “
X-Ray Diffraction Study of Microstructural Changes During Fatigue Damage Initiation in Pipe Steels: Role of the Initial Dislocation Structure
,”
Mater. Sci. Eng. A
,
580
, pp.
1
12
. 10.1016/j.msea.2013.05.042
4.
Malitckii
,
E.
,
Remes
,
H.
,
Lehto
,
P.
,
Yagodzinskyy
,
Y.
,
Bossuyt
,
S.
, and
Hänninen
,
H.
,
2018
, “
Strain Accumulation During Microstructurally Small Fatigue Crack Propagation in bcc Fe-Cr Ferritic Stainless Steel
,”
Acta Mater.
,
144
, pp.
51
59
. 10.1016/j.actamat.2017.10.038
5.
Tomkins
,
B.
, and
Biggs
,
W. D.
,
1969
, “
Low Endurance Fatigue in Metals and Polymers
,”
J. Mater. Sci.
,
4
(
6
), pp.
544
553
. 10.1007/BF00550216
6.
Peralta
,
P.
, and
Laird
,
C.
,
1998
, “
Fatigue Fracture at Bicrystal Interfaces: Experiment and Theory
,”
Acta Mater.
,
46
(
6
), pp.
2001
2020
. 10.1016/S1359-6454(97)00430-8
7.
Vehoff
,
H.
, and
Neumann
,
P.
,
1979
, “
In Situ SEM Experiments Concerning the Mechanism of Ductile Crack Growth
,”
Acta Metall.
,
27
(
5
), pp.
915
920
. 10.1016/0001-6160(79)90126-3
8.
Neumann
,
P.
,
1974
, “
The Geometry of Slip Processes at a Propagating Fatigue Crack-II
,”
Acta Metall.
,
22
(
9
), pp.
1167
1178
. 10.1016/0001-6160(74)90072-8
9.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
533
. 10.1115/1.3656900
10.
Bjerkén
,
C.
, and
Melin
,
S.
,
2008
, “
Influence of Low-Angle Boundaries on Short Fatigue Cracks Studied by a Discrete Dislocation Method
,”
17th European Conference on Fracture
, Brno, Czech Republic, Sept. 2-5, pp.
257
264
.
11.
Bjerkén
,
C.
, and
Melin
,
S.
,
2009
, “
Growth of a Short Fatigue Crack—A Long Term Simulation Using a Dislocation Technique
,”
Int. J. Solids Struct.
,
46
(
5
), pp.
1196
1204
. 10.1016/j.ijsolstr.2008.10.023
12.
Andersson
,
H.
, and
Persson
,
C.
,
2004
, “
In-Situ SEM Study of Fatigue Crack Growth Behaviour in IN718
,”
Int. J. Fatigue
,
26
(
3
), pp.
211
219
. 10.1016/S0142-1123(03)00172-5
13.
Jono
,
M.
,
Sugeta
,
A.
, and
Uematsu
,
Y.
,
2001
, “
Atomic Force Microscopy and the Mechanism of Fatigue Crack Growth
,”
Fatigue Fract. Eng. Mater. Struct.
,
24
(
12
), pp.
831
842
. 10.1046/j.1460-2695.2001.00458.x
14.
Ye
,
D. Y.
,
Wang
,
D. J.
, and
An
,
P.
,
1996
, “
Characteristics of the Change in the Surface Microhardness During High Cycle Fatigue Damage
,”
Mater. Chem. Phys.
,
44
(
2
), pp.
179
181
. 10.1016/0254-0584(95)01669-L
15.
Ye
,
D.
,
Tong
,
X.
,
Yao
,
L.
, and
Yin
,
X.
,
1998
, “
Fatigue Hardening/Softening Behavior Investigated Through Vickers Microhardness Measurement During High-Cycle Fatigue
,”
Mater. Chem. Phys.
,
56
(
3
), pp.
199
204
. 10.1016/S0254-0584(98)00135-7
16.
Spec
,
A. P. I.
,
2012
,
5L: Specification for Line Pipe
,
American Petroleum Institute
,
Washington, DC
.
17.
American Association of State Highway and Transportation Officials, & American Society for Testing and Materials
,
2004
,
E8M-04 Standard Test Methods for Tension Testing of Metallic Materials (Metric) 1
,
ASTM International
.
18.
ASTM, E
,
2014
, E 415-2014, Standard Test Method for Analysis of Carbon and Low Alloy Steel by Spark Atomic Emission Spectrometry, ASTM Annual Book of Standards.
19.
Callister
,
J. R.
,
2007
,
W.D. Ciência e Engenharia de Materiais-Uma Introdução. Rio de Janeiro: LivrosTécnicos e Científicos
,
Editora
, p
.
239
.
20.
Abràmoff
,
M. D.
,
Magalhães
,
P. J.
, and
Ram
,
S. J.
,
2004
, “
Image Processing With ImageJ
,”
Biophoton. Int.
,
11
(
7
), pp.
36
42
.
21.
Schenck
,
C.
,
1971
,
Wechselbiegemaschine PWON
,
Maschinenfabrik GmbH
,
Darmstadt, Germany
.
22.
Shigley
,
J. E.
, and
Mischke
,
C. R.
,
2008
, “
Fatigue Failure Resulting From Variable Loading
,”
Mech. Eng. Des.
, pp.
370
373
.
23.
Chicot
,
D.
,
Tilkin
,
K.
,
Jankowski
,
K.
, and
Wymysłowski
,
A.
,
2013
, “
Reliability Analysis of Solder Joints Due to Creep and Fatigue in Microelectronic Packaging Using Microindentation Technique
,”
Microelectron. Reliab.
,
53
(
5
), pp.
761
766
. 10.1016/j.microrel.2013.01.008
24.
N’jock
,
M. Y.
,
Chicot
,
D.
,
Ndjaka
,
J. M.
,
Lesage
,
J.
,
Decoopman
,
X.
,
Roudet
,
F.
, and
Mejias
,
A.
,
2015
, “
A Criterion to Identify Sinking-in and Piling-up in Indentation of Materials
,”
Int. J. Mech. Sci.
,
90
, pp.
145
150
. 10.1016/j.ijmecsci.2014.11.008
25.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
. 10.1557/JMR.1992.1564
26.
Loubet
,
J. L.
,
Bauer
,
M.
,
Tonck
,
A.
,
Bec
,
S.
, and
Gauthier
,
B.
,
1993
,
Manuel, Mechanical Properties and Deformation Behaviour of Materials Having Ultra-Fine Microstructures
,
NATO ASI
, 233, pp.
429
447
.
27.
Bandyopadhyay
,
P. P.
,
Chicot
,
D.
,
Kumar
,
C. S.
,
Decoopman
,
X.
, and
Lesage
,
J.
,
2013
, “
Influence of Sinking-in and Piling-up on the Mechanical Properties Determination by Indentation: A Case Study on Rolled and DMLS Stainless Steel
,”
Mater. Sci. Eng. A
,
576
, pp.
126
133
. 10.1016/j.msea.2013.03.081
28.
Chicot
,
D.
,
Roudet
,
F.
,
Zaoui
,
A.
,
Louis
,
G.
, and
Lepingle
,
V.
,
2010
, “
Influence of Visco-Elasto-Plastic Properties of Magnetite on the Elastic Modulus: Multicyclic Indentation and Theoretical Studies
,”
Mater. Chem. Phys.
,
119
(
1–2
), pp.
75
81
. 10.1016/j.matchemphys.2009.07.033
29.
King
,
R. B.
,
1987
, “
Elastic Analysis of Some Punch Problems for a Layered Medium
,”
Int. J. Solids Struct.
,
23
(
12
), pp.
1657
1664
. 10.1016/0020-7683(87)90116-8
You do not currently have access to this content.