Abstract

Model tests have been performed with four mobile offshore drilling units (MODUs) with the aim of identifying wave drift forces and low-frequency damping. The MODUs configuration is different, namely on the number and diameter of columns; therefore, the sample is representative of many of the existing concepts. The model scale is the same as well as the wave and current conditions. The experimental program includes irregular waves with systematic variations of the significant wave height, wave peak period, current velocity, and vessel heading. A nonlinear data analysis technique (cross bi-spectral analysis) is applied to identify the surge and sway quadratic transfer functions (QTFs) of the slowly varying excitation, together with the linearized low-frequency damping. The paper also presents a semi-empirical formula developed in the scope of the EXWAVE JIP to correct potential flow mean wave drift force coefficients of Semis in high seastates with current. The empirical QTFs are then compared with numerical predictions. Comparisons with potential flow coefficients lead to conclusions on the role of viscous drift. The semi-empirical formula is assessed based on comparisons with test results and concluded that it provides a significant improvement compared to potential flow predictions.

References

1.
Kvitrud
,
A.
,
2014
, “
Lessons Learned From Norwegian Anchor Line Failures 2010–2013
,”
Proceedings of the ASME 2014 33th International Conference on Ocean, Offshore and Arctic Engineering
,
San Francisco, CA
,
June 8–13
, Paper No. OMAE2014-23095.
2.
Stansberg
,
C. T.
,
Kaasen
,
K. E.
,
Abrahamsen
,
B. C.
,
Nestgåard
,
A.
,
Shao
,
Y.
, and
Larsen
,
K.
,
2015
, “
Challenges in Wave Force Modelling for Mooring Design in High Seas
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
,
May 4–7
, Paper No. OTC-25944-MS.
3.
Stansberg
,
C. T.
,
2001
, “
Data Interpretation and System Identification in Hydrodynamic Model Testing
,”
Proceedings of the 11th International Offshore and Polar Engineering Conference
,
Stavanger, Norway
,
June 17–22
, pp.
1
9
.
4.
Dev
,
A. K.
, and
Pinkster
,
J. A.
,
1994
, “
Experimental Evaluation of the Viscous Contribution to Mean Drift Forces on Vertical Cylinders
,”
Proceedings of the 7th International Conference on the Behaviour of Offshore Structures (BOSS’94)
,
MIT, USA
,
July 12–15
, Vol.
2
, pp.
855
875
.
5.
Faltinsen
,
O.
,
1990
,
Sea Loads on Ships and Offshore Structures
,
Cambridge University Press
,
Cambridge, UK
.
6.
Fonseca
,
N.
,
Stansberg
,
C. T.
,
Nestegård
,
A.
,
Bøckmann
,
A.
, and
Baarholm
,
R.
,
2016
, “
The EXWAVE JIP: Improved Procedures to Calculate Slowly Varying Wave Drift Forces on Floating Units in Extreme Seas
,”
Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Busan, South Korea
,
June 19–24
, Paper No. OMAE2016-54829.
7.
Fonseca
,
N.
,
Ommani
,
B.
,
Stansberg
,
C. T.
,
Bøckmann
,
A.
,
Birknes-Berg
,
J.
,
Nestegård
,
A.
,
de Hauteclocque
,
G.
, and
Baarholm
,
R.
,
2017
, “
Wave Forces and Low Frequency Drift Motions in Extreme Seas: Benchmark Studies
,”
Proceedings of the Offshore Technology Conference
,
Houston, TX
,
May 1–4
, Paper No. OTC-27803-MS.
8.
Fonseca
,
N.
, and
Stansberg
,
C. T.
,
2017
, “
Wave Drift Forces and Low Frequency Damping on the Exwave Semi-Submersible
,”
Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
, Paper No. OMAE2017-62540.
9.
Fonseca
,
N.
, and
Stansberg
,
C. T.
,
2017
, “
Wave Drift Forces and Low Frequency Damping on the Exwave FPSO
,”
Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
, Paper No. OMAE2017-62540.
10.
Ommani
,
B.
,
Fonseca
,
N.
, and
Stansberg
,
C. T.
,
2017
, “
Simulation of Low Frequency Motions in Severe Seastates Accounting for Wave-Current Interaction Effects
,”
Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
, Paper No. OMAE2017-62550.
11.
Larsen
,
K.
,
Bjørkli
,
R.
,
Vigesdal
,
T.
, and
Dalane
,
O.
,
2018
, “
Mooring of Semi Submersibles in Extreme Seastates—Simplified Models for Wave Drift Forces and Low Frequency Damping
,”
Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering
,
Madrid, Spain
,
June 17–22
, Paper No. OMAE2018-77178.
12.
Chakrabarti
,
S. K.
,
1984
, “
Steady Drift Force on a Vertical Cylinder—Viscous vs Potential
,”
Appl. Ocean Res.
,
6
(
2
), pp.
73
82
. 10.1016/0141-1187(84)90044-0
13.
Dev
,
A. K.
, and
Pinkster
,
J. A.
,
1995
, “
Viscous Mean Drift Forces on Moored Semi-Submersibles
,”
Proceedings of the 5th International Offshore and Polar Engineering Conference
,
The Hague, The Netherlands
,
June 11–16
.
14.
Berthelsen
,
P. A.
,
Baarholm
,
R.
,
Pakozdi
,
C.
,
Stansberg
,
C. T.
,
Hassan
,
A.
,
Downie
,
M.
, and
Incecik
,
A.
,
2009
, “
Viscous Drift Forces and Responses on a Semisubmersible Platform in High Waves
,”
Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering
,
Honolulu, Hawaii
,
May 31–June 5
, Paper No. OMAE2009-79483.
15.
Burns
,
G. E.
,
1983
, “
Calculation of Viscous Drift of a Tension leg Platform
,”
Proceedings of the 2nd International Offshore Mechanics and Arctic Engineering Conference
,
Houston, TX
,
ASME
, pp.
22
30
.
16.
Chitrapu
,
A. S.
,
Ertekin
,
R. C.
, and
Paulling
,
J. R.
,
1993
, “
Viscous Drift Forces in Regular and Irregular Waves
,”
Ocean Eng.
,
20
(
1
), pp.
33
55
. 10.1016/0029-8018(93)90045-J
17.
Morison
,
J. R.
,
O'Brien
,
M. P.
,
Johnson
,
J. W.
, and
Schaaf
,
S. A.
,
1950
, “
The Force Exerted by Surface Waves on Piles
,”
Pet. Trans.
,
189
, pp.
149
154
.
18.
Sarpkaya
,
T.
,
1986
, “
Force on a Circular Cylinder in Viscous Oscillatory Flow at low Keulegan-Carpenter Numbers
,”
J. Fluid Mech.
,
165
, pp.
61
71
. 10.1017/S0022112086002999
19.
Bearman
,
P. W.
,
Downie
,
M. J.
,
Graham
,
J. M. R.
, and
Obasaju
,
E. D.
,
1985
, “
Forces on Cylinders in Viscous Oscillatory Flow at Low Keulegan-Carpenter Numbers
,”
J. Fluid Mech.
,
154
, pp.
337
356
. 10.1017/S0022112085001562
20.
Chakrabarti
,
S. K.
,
2003
,
Hydrodynamics of Offshore Structures
,
WIT Press/ Computational Mechanics
.
21.
Stansberg
,
C. T.
,
1997
, “
Linear and Nonlinear System Identification in Model Testing
,”
International Conference on Nonlinear Aspects of Physical Model Tests
,
OTRC, Texas A&M University
,
College Station, TX
,
May 2–3
.
22.
Maniar
,
H. D.
, and
Newman
,
J. N.
,
1997
, “
Wave Diffraction by a Long Array of Cylinders
,”
J. Fluid Mech.
,
339
, pp.
309
330
. 10.1017/S0022112097005296
23.
Evans
,
D. V.
, and
Porter
,
R.
,
1997
, “
Trapped Modes About Multiple Cylinders in a Channel
,”
J. Fluid Mech.
,
339
, pp.
331
356
. 10.1017/S0022112097005302
24.
He
,
G.
,
Zhang
,
Z.
,
Wang
,
W.
,
Wang
,
Z.
, and
Jing
,
P.
,
2020
, “
Near-Trapping on a Four Column Structure and the Reduction of Wave Drift Forces Using Optimized Method
,”
J. Mar. Sci. Eng.
,
8
(
174
), p.
2020
.
25.
Grice
,
J. R.
,
Taylor
,
P. H.
, and
Eatock Taylor
,
R.
,
2013
, “
Near-Trapping Effects for Multi-Column Structures in Deterministic and Random Waves
,”
Ocean Eng.
,
58
, pp.
60
77
. 10.1016/j.oceaneng.2012.09.021
26.
Bai
,
W.
,
Feng
,
X.
,
Taylor
,
R.
, and
Ang
,
K.
,
2014
, “
Fully Nonlinear Analysis of Near-Trapping Phenomenon Around an Array of Cylinders
,”
Appl. Ocean Res.
,
44
, pp.
71
81
. 10.1016/j.apor.2013.11.003
27.
Siddorn
,
P.
, and
Eatock Taylor
,
R.
,
2008
, “
Diffraction and Independent Radiation by an Array of Floating Cylinders
,”
Ocean Eng.
,
35
(
13
), pp.
1289
1303
. 10.1016/j.oceaneng.2008.06.003
28.
Malenica
,
S.
,
Eatock Taylor
,
R.
, and
Huang
,
J. B.
,
1999
, “
Second-Order Water Wave Diffraction by an Array of Vertical Cylinders
,”
J. Fluid Mech.
,
390
, pp.
349
373
. 10.1017/S0022112099005273
29.
Newman
,
J. N.
,
2001
, “
Wave Effects on Multiple Bodies
,”
Proceedings of the Conference on Hydrodynamics in Ship and Ocean Engineering
,
Japan
,
April
, pp.
3
26
.
30.
Hermundstad
,
E. M.
,
Hoff
,
J. R.
,
Stansberg
,
C. T.
, and
Baarholm
,
R. J.
,
2016
, “
Effects of Wave-Current Interaction on Floating Bodies
,”
Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering
,
Busan, South Korea
,
June 19–24
.
31.
Hermundstad
,
E. M.
,
Hoff
,
J. R.
,
Fonseca
,
N.
, and
Bjørkli
,
R.
,
2017
, “
Wave-current Interaction Effects on Airgap Calculation
,”
Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering
,
Trondheim, Norway
,
June 25–30
, Paper No. OMAE2017-62548.
32.
Aranha
,
J. A. P.
,
1994
, “
A Formula for Wave Damping in the Drift of a Floating Body
,”
J. Fluid Mech.
,
275
, pp.
147
155
. 10.1017/S0022112094002314
33.
Aranha
,
J. A. P.
,
1996
, “
Second-Order Horizontal Steady Forces and Moment on a Floating Body With Small Forward Speed
,”
J. Fluid Mech.
,
313
, pp.
39
54
. 10.1017/S002211209600211X
34.
Zhao
,
R.
, and
Faltinsen
,
O.
,
1989
, “
Interaction Between Current, Wave and Marine Structures
,”
Proceedings of the 5th International Conference on Numerical Hydrodynamics
,
Hiroshima, Japan
,
Sept. 24–28
.
35.
Grue
,
J.
, and
Palm
,
E.
,
1993
, “
The Mean Drift Force and Yaw Moment on Marine Structures in Waves and Current
,”
J. Fluid Mech.
,
250
, pp.
121
142
. 10.1017/S0022112093001405
36.
Chen
,
X. B.
, and
Malenica
,
S.
,
1998
, “
Interaction Effects of Local Steady Flow on Wave Diffraction-Radiation at low Forward Speed
,”
Int. J. Offshore Polar Eng.
,
8
(
2
), pp.
102
109
.
You do not currently have access to this content.