Performances of a hybrid electrokinetic-passive micromixer are predicted numerically. An h/p-type spectral element method is used to simulate the mixing behavior in microdevices. The numerical algorithm employs modal spectral expansion in quadrilateral and unstructured triangular meshes and provides high-order numerical accuracy. A second-order accurate, stiffly stable integration scheme is used for temporal integration. In the numerical technique, the electric double layer is not resolved to avoid expensive computation, rather a slip velocity is assigned at the channel surface based on the electric field and the electroosmotic mobility. The presented hybrid mixing scheme takes advantages of mixing enhancements induced by asymmetric flow geometries and electrokinetic relay actuation. Effects of relay frequency, applied electric potential, channel width, and channel geometry on micromixing have been conducted. Numerical results show that electrokinetic relay at an appropriate frequency causes effective mixing. Moreover, asymmetric flow geometries and narrow channel width are critical for ultraeffective mixing. The proposed hybrid mixing scheme not only provides excellent mixing within very short time, but also can easily be integrated with microdevices for “lab-on-a-chip” applications because there is no need of any external mechanical pumps.

1.
Bessoth
,
F. G.
,
DeMello
,
A. J.
, and
Manz
,
A.
, 1999, “
Microstructure for Efficient Continuous Flow Mixing
,”
Anal. Commun.
1359-7337,
36
, pp.
213
215
.
2.
Losey
,
M. W.
,
Jackman
,
R. J.
,
Firebaugh
,
S. L.
,
Schmidt
,
M. A.
, and
Jensen
,
K. F.
, 2002, “
Design and Fabrication of Microfluidic Devices for Multiphase Mixing and Reaction
,”
J. Microelectromech. Syst.
1057-7157,
11
, pp.
709
717
.
3.
Hong
,
C. C.
,
Choi
,
J. W.
, and
Ahn
,
C. H.
, 2004, “
A Novel In-Plane Passive Microfluidic Mixer With Modified Tesla Structures
,”
Lab Chip
1473-0197,
4
, pp.
109
113
.
4.
Mengeaud
,
V.
,
Josserand
,
J.
, and
Girault
,
H. H.
, 2002, “
Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study
,”
Anal. Chem.
0003-2700,
74
, pp.
4279
4286
.
5.
Liu
,
R. H.
,
Stremler
,
M. A.
,
Sharp
,
K. V.
,
Olsen
,
M. G.
,
Santiago
,
J. G.
,
Adrian
,
R. J.
,
Aref
,
H.
, and
Beebe
,
D. J.
, 2000, “
Passive Mixing in a Three-Dimensional Serpentine Microchannel
,”
J. Microelectromech. Syst.
1057-7157,
9
, pp.
190
197
.
6.
Park
,
S. J.
,
Kim
,
J. K.
,
Park
,
J.
,
Chung
,
S.
,
Chung
,
C.
, and
Chang
,
J. K.
, 2004, “
Rapid Three-Dimensional Passive Rotation Micromixer Using the Breakup Process
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
6
14
.
7.
Stroock
,
A. D.
,
Dertinger
,
S. K. W.
,
Ajdari
,
A.
,
Mezic
,
I.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
, 2002, “
Chaotic Mixer for Microchannels
,”
Science
0036-8075,
295
, pp.
647
651
.
8.
Jacobson
,
S. C.
,
McKnight
,
T. E.
, and
Ramsey
,
J. M.
, 1999, “
Microfluidic Devices for Electrokinetically Driven Parallel and Serial Mixing
,”
Anal. Chem.
0003-2700,
71
, pp.
4455
4459
.
9.
Oddy
,
M. H.
,
Santiago
,
J. G.
, and
Mikkelsen
,
J. C.
, 2001, “
Electrokinetic Instability Micromixing
,”
Anal. Chem.
0003-2700,
73
, pp.
5822
5832
.
10.
Yang
,
Z.
,
Matsumoto
,
S.
,
Goto
,
H.
,
Matsumoto
,
M.
, and
Maeda
,
R.
, 2001, “
Ultrasonic Micromixer for Microfluidic Systems
,”
Sens. Actuators, A
0924-4247,
93
, pp.
266
272
.
11.
Lu
,
L. H.
,
Ryu
,
K. S.
, and
Liu
,
C.
, 2002, “
A Magnetic Microstirrer and Array for Microfluidic Mixing
,”
J. Microelectromech. Syst.
1057-7157,
11
, pp.
462
469
.
12.
Tsai
,
J. H.
, and
Lin
,
L.
, 2002, “
Active Microfluidic Mixer and Gas Bubble Filter Driven by Thermal Bubble Micropump
,”
Sens. Actuators, A
0924-4247,
97–98
, pp.
665
671
.
13.
Rong
,
R.
,
Choi
,
J. W.
, and
Ahn
,
C. H.
, 2003, “
A Functional Magnetic Bead/Biocell Sorter Using Fully Integrated Magnetic Micro/Nano Tips
,”
Proc. IEEE MEMS
,
IEEE
, New York, pp.
530
533
.
14.
Suzuki
,
H.
, and
Ho
,
C. M.
, 2002, “
A Magnetic Force Driven Chaotic Micro-Mixer
,”
Proc. of 15th IEEE International Conference on MEMS
,
IEEE
, New York, pp.
40
43
.
15.
Deval
,
J.
,
Tabeling
,
P.
, and
Ho
,
C. M.
, 2002, “
A Dielectro-phoretic Chaotic Mixer
,”
Proc. of 15th IEEE International Conference on MEMS
,
IEEE
, New York, pp.
36
39
.
16.
Liu
,
R. H.
,
Yang
,
J.
,
Pindera
,
M. Z.
,
Athavale
,
M.
, and
Grodzinski
,
P.
, 2002, “
Bubble-Induced Acoustic Micromixing
,”
Lab Chip
1473-0197,
2
, pp.
151
157
.
17.
Bottausci
,
F.
,
Mezic
,
I.
,
Meinhart
,
C. D.
, and
Cardonne
,
C.
, 2004, “
Mixing in the Shear Superposition Micromixer: Three-Dimensional Analysis
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
362
, pp.
1001
1018
.
18.
He
,
B.
,
Burke
,
B. J.
,
Zhang
,
X.
,
Zhang
,
R.
, and
Regnier
,
F. E.
, 2001, “
A Picoliter-Volume Mixer for Microfluidic Analytical Systems
,”
Anal. Chem.
0003-2700,
73
, pp.
1942
1947
.
19.
Johnson
,
T. J.
,
Ross
,
D.
, and
Locascio
,
L. E.
, 2002, “
Rapid Microfluidic Mixing
,”
Anal. Chem.
0003-2700,
74
, pp.
45
51
.
20.
Probstein
,
R. F.
, 1994,
Physicochemical Hydrodynamics
,
Wiley
, New York.
21.
Dutta
,
P.
, and
Beskok
,
A.
, 2001, “
Analytical Solution of Combined Electroosmotic/Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects
,”
Anal. Chem.
0003-2700,
73
, pp.
1979
1986
.
22.
Ren
,
L.
,
Sinton
,
D.
, and
Li
,
D.
, 2003, “
Numerical Simulation of Microfluidic Injection Processes in Crossing Microchannels
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
739
747
.
23.
Ermakov
,
S. V.
,
Jacobson
,
S. C.
, and
Ramsey
,
J. M.
, 2000, “
Computer Simulation of Electrokinetic Injection Techniques in Microfluidic Devices
,”
Anal. Chem.
0003-2700,
72
, pp.
3512
3517
.
24.
Patankar
,
N. A.
, and
Hu
,
H. H.
, 1998, “
Numerical Simulation of Electroosmotic Flow
,”
Anal. Chem.
0003-2700,
70
, pp.
1870
1881
.
25.
Lin
,
C. H.
,
Fu
,
L. M.
, and
Chien
,
Y. S.
, 2004, “
Microfluidic T-Form Mixer Utilizing Switching Electroosmotic Flow
,”
Anal. Chem.
0003-2700,
76
, pp.
5265
5272
.
26.
Dutta
,
P.
,
Beskok
,
A.
, and
Warburton
,
T. C.
, 2002, “
Numerical Simulation of Mixed Electroosmotic/Pressure Driven Flows
,”
Numer. Heat Transfer, Part A
1040-7782,
41
pp.
131
148
.
27.
Tang
,
Z.
,
Hong
,
S.
,
Djukic
,
D.
,
Modi
,
V.
,
West
,
A. C.
,
Yardley
,
J.
, and
Osgood
,
R. M.
, 2002, “
Electrokinetic Flow Control For Composition Modulation in a Microchannel
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
870
877
.
28.
Karniadakis
,
G. E.
, and
Sherwin
,
S. J.
, 1999,
Spectral HP Element Methods for CFD
,
Oxford University Press
, London.
29.
Sert
,
C.
, and
Beskok
,
A.
, 2003, “
Numerical Simulation of Reciprocating Flow Forced Convection in Two-Dimensional Channels
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
403
412
.
30.
Dutta
,
P.
,
Beskok
,
A.
, and
Warburton
,
T. C.
, 2002, “
Electroosmotic Flow Control in Complex Microgeometries
,”
J. Microelectromech. Syst.
1057-7157,
11
pp.
36
44
.
31.
Keisuke
,
H.
, and
Dutta
,
P.
, 2005, “
Flow Diagnosis in a Trapezoidal Microchannel
,”
Proc. of JSME conference on Fluid Mechanics
,
JSME
, Paper No. AM05-07-002.
You do not currently have access to this content.