Abstract
Risk-informed design approaches are comprehensively implemented in the design and verification process of HPR1000 nuclear power plant. Particularly, Level 2 PSA is applied in the optimization of severe accident prevention and mitigation measures to avoid the extravagant redundancy of system configurations. HPR1000 preliminary level 2 PSA practices consider internal events of the reactor in the context of at-power condition. Severe accidents mitigation and prevention system and its impact on the overall large release frequency (LRF) level are evaluated. The results showed that severe accident prevention and mitigation systems, such as fast depressurization system, the cavity injection system and the passive containment heat removal system perform well in reducing LRF and overall risk level of HPR1000 NPP. Bypass events, reactor rapture events, and the containment bottom melt-through induced by MCCI are among the dominant factors of the LRF. The level 2 PSA analysis results indicate that HPR1000 design is reliable with no major weaknesses.