To study the pool boiling mechanism of HFE-7100, a micro array of forty-four Resistance Temperature Detectors (RTD’s) covering a 1mm in diameter circular area was microfabricated around a single cylindrical cavity on a thin silicon membrane. Constant heat flux was applied to the surface using a thin film heater microfabricated on the backside of the membrane. Images of the bubbles and the temperature of the heated wall underneath and around the bubble were recorded during the pool boiling process. Using the images of the bubbles, their volume, velocity, and frequency of departure was calculated. The acquired experimental data provided the fundamental parameters required for evaluating several boiling models whose development was based on the bubble diameter, frequency of departure, and velocity. For the conditions of this experiment, it seems that the current data can be best explained by transient heat conduction to the liquid adjacent to the heated wall and subsequent pumping of the superheated liquid by the bubbles. However, more experimental data in different conditions are required before solid conclusions can be reached. Details of the experimental results, models, and comparison between the two are presented in this paper.

This content is only available via PDF.
You do not currently have access to this content.